A Riemann–roch–hirzebruch Formula for Traces of Differential Operators

نویسندگان

  • MARKUS ENGELI
  • GIOVANNI FELDER
چکیده

Let D be a holomorphic differential operator acting on sections of a holomorphic vector bundle on an n-dimensional compact complex manifold. We prove a formula, conjectured by Feigin and Shoikhet, giving the Lefschetz number of D as the integral over the manifold of a differential form. The class of this differential form is obtained via formal differential geometry from the canonical generator of the Hochschild cohomology HH (Dn,D n) of the algebra of differential operators on a formal neighbourhood of a point. If D is the identity, the formula reduces to the Riemann–Roch–Hirzebruch formula. Résumé. Soit D un opérateur différentiel holomorphe opérant sur les sections d’un fibré vectoriel holomorphe sur une variété complexe de dimension n. Nous démontrons une formule, conjecturée par Feigin et Shoikhet, donnant le nombre de Lefschetz de D comme intégrale d’une forme différentielle sur la variété. La classe de cette forme différentielle est obtenue, via la géométrie différentielle formelle, du générateur canonique de la cohomologie de Hochschild HH (Dn,D n) de l’algèbre des opérateurs différentiels sur un entourage formel d’un point. Si D est l’identité, la formule se réduit à la formule de Riemann–Roch–Hirzebruch.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of Elliptic Operators and the Atiyah Singer Index Theorem

1. Review of Differential Geometry 2 2. Definition of an Elliptic Operator 5 3. Properties of Elliptic Operators 7 4. Example of an Elliptic Operator 9 5. Example: The Euler Characteristic 12 6. Example: The Signature Invariant 14 7. A Theorem of Atiyah, Frank and Mayer 18 8. Clifford Algebras 20 9. A Diversion: Constructing Vector Fields on Spheres using Clifford Algebras 23 10. Topological In...

متن کامل

Riemann–roch Theorem for Operations in Cohomology of Algebraic Varieties

The Riemann–Roch theorem for multiplicative operations in oriented cohomology theories for algebraic varieties is proved and an explicit formula for the corresponding Todd classes is given. The formula obtained can also be applied in the topological situation, and the theorem can be regarded as a change-of-variables formula for the integration of cohomology classes. The classical Riemann–Roch t...

متن کامل

Riemann-Roch-Hirzebruch theorem and Topological Quantum Mechanics

In the present paper we discuss an independent on the Grothendieck-Sato isomorphism approach to the Riemann-RochHirzebruch formula for an arbitrary differential operator. Instead of the Grothendieck-Sato isomorphism, we use the Topological Quantum Mechanics (more or less equivalent to the well-known constructions with the Massey operations from [KS], [P], [Me]). The statement that the Massey op...

متن کامل

Lecture no

Last time: Real 4-manifolds M with almost (many) complex structures but with no integrable almost complex structure, no complex structure. In understanding this situation , we observed the importance of the Riemann-Roch –Hirzebruch formula, and of the fact that it actually holds in the non-Kähler case(from the Atiyah-Singer Theorem). Namely for a compact complex manifold of any dimension and wi...

متن کامل

A path integral derivation of χy-genus

The formula for the Hirzebruch χy-genus of complex manifolds is a consequence of the Hirzebruch–Riemann–Roch formula. The classical index formulae for Todd genus, Euler number and signature correspond to the case when the complex variable y = 0,−1 and 1 respectively. Here we give a direct derivation of this nice formula based on supersymmetric quantum mechanics. PACS numbers: 12.60.Jv, 02.40.Ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008